Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
J Neuroimaging ; 32(1): 158-170, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34520593

RESUMO

BACKGROUND AND PURPOSE: People with human immunodeficiency virus (HIV; PWH) present a complex array of immunologic and medical disorders that impact brain structure and metabolism, complicating the interpretation of neuroimaging. This pilot study of well-characterized multi-morbid PWH examined how medical and immunologic factors predicted brain characteristics on proton MR spectroscopy (1H-MRS) and diffusion-weighted imaging (DWI). METHODS: Eighteen individuals on combination antiretroviral therapy (cART), with mean age of 56 years, underwent medical history review, neuroimaging, and on the day of imaging, blood draw for assay of 20 plasma cytokines and flow cytometric characterization of peripheral blood mononuclear cell subsets. Predictors of n-acetyl aspartate, choline, myoinositol, glutamate/glutamine, fractional anisotropy and mean diffusivity were identified through bivariate correlation; those significant at p < .1000 were advanced to multivariate analysis, with models created for each neuroimaging outcome. RESULTS: Monocyte subsets and diverse cytokines accounted for 16 of 25 (64%) variables predicting 1H-MRS spectra in frontal gray and white matter and basal ganglia; monocyte subsets did not predict any DWI characteristic. In contrast, age, presence of hypertension, and duration of HIV infection accounted for 13 of 25 (52%) variables predicting diffusion characteristics in the corpus callosum, thalamic radiations, and basal ganglia but only 3 of 25 (12%) predictors of 1H-MRS features. CONCLUSIONS: 1H-MRS neurometabolites were most often predicted by immunologic factors sensitive to temporal variation, whereas DWI metrics were more often related to longer-term disease state. In multi-morbid cART-era populations, selection and interpretation of neuroimaging modalities should account for complex temporal and pathogenetic influences of immunologic abnormality, disease state, and aging.


Assuntos
Infecções por HIV , Ácido Aspártico/metabolismo , Encéfalo/patologia , HIV/metabolismo , Infecções por HIV/diagnóstico por imagem , Infecções por HIV/patologia , Humanos , Leucócitos Mononucleares/metabolismo , Leucócitos Mononucleares/patologia , Espectroscopia de Ressonância Magnética , Pessoa de Meia-Idade , Projetos Piloto
2.
J Am Chem Soc ; 143(28): 10727-10734, 2021 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-34242007

RESUMO

Metal-organic frameworks (MOFs) are promising materials for hydrogen storage that fail to achieve expected theoretical values of volumetric storage density due to poor powder packing. A strategy that improves packing efficiency and volumetric hydrogen gas storage density dramatically through engineered morphologies and controlled-crystal size distributions is presented that holds promise for maximizing storage capacity for a given MOF. The packing density improvement, demonstrated for the benchmark sorbent MOF-5, leads to a significant enhancement of volumetric hydrogen storage performance relative to commercial MOF-5. System model projections demonstrate that engineering of crystal morphology/size or use of a bimodal distribution of cubic crystal sizes in tandem with system optimization can surpass the 25 g/L volumetric capacity of a typical 700 bar compressed storage system and exceed the DOE targets 2020 volumetric capacity (30 g/L). Finally, a critical link between improved powder packing density and reduced damage upon compaction is revealed leading to sorbents with both high surface area and high density.

3.
mBio ; 12(2)2021 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-33727362

RESUMO

The human immunodeficiency virus (HIV) enters the central nervous system (CNS) within a few days after primary infection, establishing viral reservoirs that persist even with combined antiretroviral therapy (cART). We show that monocytes from people living with HIV (PLWH) on suppressive cART harboring integrated HIV, viral mRNA, and/or viral proteins preferentially transmigrate across the blood-brain barrier (BBB) to CCL2 and are significantly enriched post-transmigration, and even more highly enriched posttransmigration than T cells with similar properties. Using HIV-infected ART-treated mature monocytes cultured in vitro, we recapitulate these findings and demonstrate that HIV+ CD14+ CD16+ ART-treated monocytes also preferentially transmigrate. Cenicriviroc and anti-JAM-A and anti-ALCAM antibodies significantly and preferentially reduce/block transmigration of HIV+ CD14+ CD16+ ART-treated monocytes. These findings highlight the importance of monocytes in CNS HIV reservoirs and suggest targets to eliminate their formation and reseeding.IMPORTANCE We characterized mechanisms of CNS viral reservoir establishment/replenishment using peripheral blood mononuclear cells (PBMC) of PLWH on cART and propose therapeutic targets to reduce/block selective entry of cells harboring HIV (HIV+) into the CNS. Using DNA/RNAscope, we show that CD14+ CD16+ monocytes with integrated HIV, transcriptionally active, and/or with active viral replication from PBMC of PLWH prescribed cART and virally suppressed, selectively transmigrate across a human BBB model. This is the first study to our knowledge demonstrating that monocytes from PLWH with HIV disease for approximately 22 years and with long-term documented suppression can still carry virus into the CNS that has potential to be reactivated and infectious. This selective entry into the CNS-and likely other tissues-indicates a mechanism of reservoir formation/reseeding in the cART era. Using blocking studies, we propose CCR2, JAM-A, and ALCAM as targets on HIV+ CD14+ CD16+ monocytes to reduce and/or prevent CNS reservoir replenishment and to treat HAND and other HIV-associated comorbidities.


Assuntos
Sistema Nervoso Central/virologia , Reservatórios de Doenças/virologia , Leucócitos Mononucleares/fisiologia , Leucócitos Mononucleares/virologia , Migração Transendotelial e Transepitelial/imunologia , Antirretrovirais/farmacologia , Antirretrovirais/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Asparaginase/uso terapêutico , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/imunologia , Barreira Hematoencefálica/virologia , Ensaios de Migração de Leucócitos , Sistema Nervoso Central/efeitos dos fármacos , Quimiocina CCL2/imunologia , Quimiocina CCL2/farmacologia , Citarabina/uso terapêutico , Daunorrubicina/uso terapêutico , Feminino , Infecções por HIV/virologia , Humanos , Técnicas In Vitro , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/imunologia , Masculino , Pessoa de Meia-Idade , Tioguanina/uso terapêutico
4.
Chemphyschem ; 20(15): 1997-2009, 2019 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-31177637

RESUMO

In order to determine a material's hydrogen storage potential, capacity measurements must be robust, reproducible, and accurate. Commonly, research reports focus on the gravimetric capacity, and often times the volumetric capacity is not reported. Determining volumetric capacities is not as straight-forward, especially for amorphous materials. This is the first study to compare measurement reproducibility across laboratories for excess and total volumetric hydrogen sorption capacities based on the packing volume. The use of consistent measurement protocols, common analysis, and figure of merits for reporting data in this study, enable the comparison of the results for two different materials. Importantly, the results show good agreement for excess gravimetric capacities amongst the laboratories. Irreproducibility for excess and total volumetric capacities is attributed to real differences in the measured packing volume of the material.

5.
Nat Commun ; 10(1): 1568, 2019 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-30952862

RESUMO

Few hydrogen adsorbents balance high usable volumetric and gravimetric capacities. Although metal-organic frameworks (MOFs) have recently demonstrated progress in closing this gap, the large number of MOFs has hindered the identification of optimal materials. Here, a systematic assessment of published databases of real and hypothetical MOFs is presented. Nearly 500,000 compounds were screened computationally, and the most promising were assessed experimentally. Three MOFs with capacities surpassing that of IRMOF-20, the record-holder for balanced hydrogen capacity, are demonstrated: SNU-70, UMCM-9, and PCN-610/NU-100. Analysis of trends reveals the existence of a volumetric ceiling at ∼40 g H2 L-1. Surpassing this ceiling is proposed as a new capacity target for hydrogen adsorbents. Counter to earlier studies of total hydrogen uptake in MOFs, usable capacities in the highest-capacity materials are negatively correlated with density and volumetric surface area. Instead, capacity is maximized by increasing gravimetric surface area and porosity. This suggests that property/performance trends for total capacities may not translate to usable capacities.

6.
J Neuroimmune Pharmacol ; 14(1): 120-133, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-29981000

RESUMO

HIV-associated neurocognitive disorders (HAND) occur in ~50% of HIV infected individuals despite combined antiretroviral therapy. Transmigration into the CNS of CD14+CD16+ monocytes, particularly those that are HIV infected and express increased surface chemokine receptor CCR2, contributes to neuroinflammation and HAND. To examine whether in HIV infected individuals CCR2 on CD14+CD16+ monocytes serves as a potential peripheral blood biomarker of HAND, we examined a cohort of 45 HIV infected people. We correlated CCR2 on CD14+CD16+ monocytes with cognitive status, proton magnetic resonance spectroscopy (1H-MRS) measured neurometabolite levels, and peripheral blood mononuclear cell (PBMC) HIV DNA copies. We determined that CCR2 was increased specifically on CD14+CD16+ monocytes from people with HAND (median [interquartile range (IQR)]) (63.3 [51.6, 79.0]), compared to those who were not cognitively impaired (38.8 [26.7, 56.4]) or those with neuropsychological impairment due to causes other than HIV (39.8 [30.2, 46.5]). CCR2 was associated with neuronal damage, based on the inverse correlation of CCR2 on CD14+CD16+ monocytes with total N-Acetyl Aspartate (tNAA)/total Creatine (tCr) (r2 = 0.348, p = 0.01) and Glutamine-Glutamate (Glx)/tCr (r2 = 0.356, p = 0.01) in the right and left caudate nucleus, respectively. CCR2 on CD14+CD16+ monocytes also correlated with PBMC HIV DNA copies (ρ = 0.618, p = 0.02) that has previously been associated with HAND. These findings suggest that CCR2 on CD14+CD16+ monocytes may be a peripheral blood biomarker of HAND, indicative of increased HIV infected CD14+CD16+ monocyte entry into the CNS that possibly increases the macrophage viral reservoir and contributes to HAND.


Assuntos
Complexo AIDS Demência/sangue , Complexo AIDS Demência/virologia , Biomarcadores/sangue , Monócitos/virologia , Receptores CCR2/sangue , Adulto , Idoso , DNA Viral/análise , Feminino , Proteínas Ligadas por GPI/metabolismo , Humanos , Receptores de Lipopolissacarídeos/metabolismo , Masculino , Pessoa de Meia-Idade , Receptores de IgG/metabolismo
7.
mBio ; 8(5)2017 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-29066542

RESUMO

HIV reservoirs persist despite antiretroviral therapy (ART) and are established within a few days after infection. Infected myeloid cells in the central nervous system (CNS) may contribute to the establishment of a CNS viral reservoir. The mature CD14+ CD16+ monocyte subset enters the CNS in response to chemokines, including CCL2. Entry of infected CD14+ CD16+ monocytes may lead to infection of other CNS cells, including macrophages or microglia and astrocytes, and to release of neurotoxic early viral proteins and additional cytokines. This contributes to neuroinflammation and neuronal damage leading to HIV-associated neurocognitive disorders (HAND) in ~50% of HIV-infected individuals despite ART. We examined the mechanisms of monocyte entry in the context of HIV infection and report for the first time that HIV+ CD14+ CD16+ monocytes preferentially transmigrate across the blood-brain barrier (BBB). The junctional proteins JAM-A and ALCAM and the chemokine receptor CCR2 are essential to their preferential transmigration across the BBB to CCL2. We show here that JAM-A and ALCAM are increased on HIV+ CD14+ CD16+ monocytes compared to their expression on HIVexp CD14+ CD16+ monocytes-cells that are uninfected but exposed to HIV, viral proteins, and inflammatory mediators. Antibodies against JAM-A and ALCAM and the novel CCR2/CCR5 dual inhibitor cenicriviroc prevented or significantly reduced preferential transmigration of HIV+ CD14+ CD16+ monocytes. This indicates that JAM-A, ALCAM, and CCR2 may be potential therapeutic targets to block entry of these infected cells into the brain and prevent or reduce the establishment and replenishment of viral reservoirs within the CNS.IMPORTANCE HIV infects different tissue compartments of the body, including the central nervous system (CNS). This leads to establishment of viral reservoirs within the CNS that mediate neuroinflammation and neuronal damage, contributing to cognitive impairment. Our goal was to examine the mechanisms of transmigration of cells that contribute to HIV infection of the CNS and to continued replenishment of CNS viral reservoirs, to establish potential therapeutic targets. We found that an HIV-infected subset of monocytes, mature HIV+ CD14+ CD16+ monocytes, preferentially transmigrates across the blood-brain barrier. This was mediated, in part, by increased junctional proteins JAM-A and ALCAM and chemokine receptor CCR2. We show that the CCR2/CCR5 dual inhibitor cenicriviroc and blocking antibodies against the junctional proteins significantly reduce, and often completely block, the transmigration of HIV+ CD14+ CD16+ monocytes. This suggests new opportunities to eliminate infection and seeding or reseeding of viral reservoirs within the CNS, thus reducing neuroinflammation, neuronal damage, and cognitive impairment.


Assuntos
Sistema Nervoso Central/virologia , Infecções por HIV/virologia , Monócitos/imunologia , Monócitos/virologia , Transtornos Neurocognitivos/virologia , Antígenos CD/genética , Barreira Hematoencefálica/imunologia , Moléculas de Adesão Celular/genética , Moléculas de Adesão Celular Neuronais/genética , Sistema Nervoso Central/imunologia , Proteínas Fetais/genética , Proteínas Ligadas por GPI/imunologia , Infecções por HIV/complicações , Humanos , Receptores de Lipopolissacarídeos/imunologia , Monócitos/fisiologia , Transtornos Neurocognitivos/imunologia , Transtornos Neurocognitivos/fisiopatologia , Receptores CCR2/genética , Receptores CCR2/imunologia , Receptores de Superfície Celular/genética , Receptores de IgG/imunologia
8.
J Leukoc Biol ; 102(5): 1173-1185, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28754798

RESUMO

CD14+CD16+ monocytes transmigrate into the CNS of HIV-positive people in response to chemokines elevated in the brains of infected individuals, including CXCL12. Entry of these cells leads to viral reservoirs, neuroinflammation, and neuronal damage. These may eventually lead to HIV-associated neurocognitive disorders. Although antiretroviral therapy (ART) has significantly improved the lives of HIV-infected people, the prevalence of cognitive deficits remains unchanged despite ART, still affecting >50% of infected individuals. There are no therapies to reduce these deficits or to prevent CNS entry of CD14+CD16+ monocytes. The goal of this study was to determine whether CXCR7, a receptor for CXCL12, is expressed on CD14+CD16+ monocytes and whether a small molecule CXCR7 antagonist (CCX771) can prevent CD14+CD16+ monocyte transmigration into the CNS. We showed for the first time that CXCR7 is on CD14+CD16+ monocytes and that it may be a therapeutic target to reduce their entry into the brain. We demonstrated that CD14+CD16+ monocytes and not the more abundant CD14+CD16- monocytes or T cells transmigrate to low homeostatic levels of CXCL12. This may be a result of increased CXCR7 on CD14+CD16+ monocytes. We showed that CCX771 reduced transmigration of CD14+CD16+ monocytes but not of CD14+CD16- monocytes from uninfected and HIV-infected individuals and that it reduced CXCL12-mediated chemotaxis of CD14+CD16+ monocytes. We propose that CXCR7 is a therapeutic target on CD14+CD16+ monocytes to limit their CNS entry, thereby reducing neuroinflammation, neuronal damage, and HIV-associated neurocognitive disorders. Our data also suggest that CCX771 may reduce CD14+CD16+ monocyte-mediated inflammation in other disorders.


Assuntos
Terapia Antirretroviral de Alta Atividade , Fatores Imunológicos/farmacologia , Receptores de Lipopolissacarídeos/imunologia , Receptores CXCR/antagonistas & inibidores , Receptores de IgG/imunologia , Migração Transendotelial e Transepitelial/efeitos dos fármacos , Adulto , Astrócitos/efeitos dos fármacos , Astrócitos/imunologia , Astrócitos/virologia , Barreira Hematoencefálica/imunologia , Barreira Hematoencefálica/patologia , Barreira Hematoencefálica/virologia , Contagem de Linfócito CD4 , Linfócitos T CD4-Positivos/efeitos dos fármacos , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/virologia , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/imunologia , Disfunção Cognitiva/prevenção & controle , Disfunção Cognitiva/virologia , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/imunologia , Células Endoteliais/virologia , Feminino , Proteínas Ligadas por GPI/genética , Proteínas Ligadas por GPI/imunologia , Expressão Gênica , Infecções por HIV/tratamento farmacológico , Infecções por HIV/imunologia , Infecções por HIV/prevenção & controle , Infecções por HIV/virologia , HIV-1/efeitos dos fármacos , HIV-1/crescimento & desenvolvimento , Humanos , Receptores de Lipopolissacarídeos/genética , Masculino , Pessoa de Meia-Idade , Modelos Biológicos , Monócitos/efeitos dos fármacos , Monócitos/imunologia , Monócitos/virologia , Cultura Primária de Células , Receptores CXCR/genética , Receptores CXCR/imunologia , Receptores de IgG/genética , Migração Transendotelial e Transepitelial/genética , Migração Transendotelial e Transepitelial/imunologia , Carga Viral/efeitos dos fármacos
9.
J Neuroimmune Pharmacol ; 12(2): 353-370, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28133717

RESUMO

In human immunodeficiency virus-1 (HIV) infected individuals, substance abuse may accelerate the development and/or increase the severity of HIV associated neurocognitive disorders (HAND). It is proposed that CD14+CD16+ monocytes mediate HIV entry into the central nervous system (CNS) and that uninfected and infected CD14+CD16+ monocyte transmigration across the blood brain barrier (BBB) contributes to the establishment and propagation of CNS HIV viral reservoirs and chronic neuroinflammation, important factors in the development of HAND. The effects of substance abuse on the frequency of CD14+CD16+ monocytes in the peripheral circulation and on the entry of these cells into the CNS during HIV neuropathogenesis are not known. PBMC from HIV infected individuals were analyzed by flow cytometry and we demonstrate that the frequency of peripheral blood CD14+CD16+ monocytes in HIV infected substance abusers is increased when compared to those without active substance use. Since drug use elevates extracellular dopamine concentrations in the CNS, we examined the effects of dopamine on CD14+CD16+ monocyte transmigration across our in vitro model of the human BBB. The transmigration of this monocyte subpopulation is increased by dopamine and the dopamine receptor agonist, SKF 38393, implicating D1-like dopamine receptors in the increase in transmigration elicited by this neurotransmitter. Thus, elevated extracellular CNS dopamine may be a novel common mechanism by which active substance use increases uninfected and HIV infected CD14+CD16+ monocyte transmigration across the BBB. The influx of these cells into the CNS may increase viral seeding and neuroinflammation, contributing to the development of HIV associated neurocognitive impairments.


Assuntos
Barreira Hematoencefálica/metabolismo , Dopamina/metabolismo , Infecções por HIV/metabolismo , Receptores de Lipopolissacarídeos/metabolismo , Receptores de IgG/metabolismo , Transtornos Relacionados ao Uso de Substâncias/metabolismo , Adulto , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/patologia , Células Cultivadas , Estudos de Coortes , Dopamina/farmacologia , Feminino , Infecções por HIV/patologia , Humanos , Masculino , Pessoa de Meia-Idade , Monócitos/efeitos dos fármacos , Monócitos/metabolismo , Transtornos Relacionados ao Uso de Substâncias/patologia , Migração Transendotelial e Transepitelial/efeitos dos fármacos , Migração Transendotelial e Transepitelial/fisiologia
10.
J Neurotrauma ; 33(7): 625-40, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-26414955

RESUMO

Traumatic brain injury (TBI) has acute and chronic sequelae, including an increased risk for the development of Alzheimer's disease (AD). TBI-associated neuroinflammation is characterized by activation of brain-resident microglia and infiltration of monocytes; however, recent studies have implicated beta-amyloid as a major manipulator of the inflammatory response. To examine neuroinflammation after TBI and development of AD-like features, these studies examined the effects of TBI in the presence and absence of beta-amyloid. The R1.40 mouse model of cerebral amyloidosis was used, with a focus on time points well before robust AD pathologies. Unexpectedly, in R1.40 mice, the acute neuroinflammatory response to TBI was strikingly muted, with reduced numbers of CNS myeloid cells acquiring a macrophage phenotype and decreased expression of inflammatory cytokines. At chronic time points, macrophage activation substantially declined in non-Tg TBI mice; however, it was relatively unchanged in R1.40 TBI mice. The persistent inflammatory response coincided with significant tissue loss between 3 and 120 days post-injury in R1.40 TBI mice, which was not observed in non-Tg TBI mice. Surprisingly, inflammatory cytokine expression was enhanced in R1.40 mice compared with non-Tg mice, regardless of injury group. Although R1.40 TBI mice demonstrated task-specific deficits in cognition, overall functional recovery was similar to non-Tg TBI mice. These findings suggest that accumulating beta-amyloid leads to an altered post-injury macrophage response at acute and chronic time points. Together, these studies emphasize the role of post-injury neuroinflammation in regulating long-term sequelae after TBI and also support recent studies implicating beta-amyloid as an immunomodulator.


Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Lesões Encefálicas Traumáticas/metabolismo , Lesões Encefálicas Traumáticas/patologia , Encéfalo/metabolismo , Inflamação/metabolismo , Doença de Alzheimer/etiologia , Doença de Alzheimer/patologia , Animais , Comportamento Animal/fisiologia , Western Blotting , Encéfalo/patologia , Lesões Encefálicas Traumáticas/complicações , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Humanos , Imuno-Histoquímica , Inflamação/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
11.
AIDS ; 30(4): 563-72, 2016 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-26595540

RESUMO

OBJECTIVE: Many HIV patients on combined antiretroviral therapy exhibit HIV-associated neurocognitive disorders because the brain becomes a viral reservoir. There is a need for therapeutics that can enter the central nervous system (CNS) and eradicate the virus. DESIGN: Radiolabeled human mAb 2556 to HIV gp41 selectively kills HIV-infected cells in vivo and in vitro. Here we tested the ability of 213Bi-2556 to cross a tissue culture model of the human blood brain barrier and kill HIV-infected peripheral blood mononuclear cells (PBMCs) and monocytes on the CNS side of the barrier. METHODS: 2556 mAb isoelectric point was determined with isoelectric focusing. The ability of radiolabeled 2556 to penetrate through the barrier was studied by adding it to the upper chamber of the barriers and its penetration into the CNS side was followed for 5 h. To assess the ability of Bi-2556 to kill the HIV-infected cells on the CNS side of barrier, the HIV-infected and uninfected PBMCs and monocytes were allowed to transmigrate across the barriers overnight followed by application of Bi-2556 or control mAb Bi-1418 to the top of the barrier. Killing of cells was measured by TUNEL and Trypan blue assays. The barriers were examined by confocal microscopy for overt damage. RESULTS: The isoelectric point of Bi-2556 was 9.6 enabling its penetration through the barrier by transcytosis. Bi-2556 killed significantly more transmigrated HIV-infected cells in comparison to Bi-1418 and uninfected cells. No overt damage to barriers was observed. CONCLUSION: We demonstrated that Bi-2556 mAb crossed an in-vitro human blood brain barrier and specifically killed transmigrated HIV-infected PBMCs and monocytes without overt damage to the barrier.


Assuntos
Barreira Hematoencefálica , Anticorpos Anti-HIV/imunologia , Proteína gp41 do Envelope de HIV/imunologia , Infecções por HIV/terapia , Imunoterapia/métodos , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/fisiologia , Anticorpos Monoclonais/imunologia , Técnicas de Cultura de Células , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Humanos , Leucócitos Mononucleares/virologia , Modelos Biológicos
12.
Malar J ; 14: 513, 2015 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-26691993

RESUMO

BACKGROUND: Cerebral malaria (CM) remains a significant cause of morbidity and mortality in children in sub-Saharan Africa. CM mortality has been associated with increased brain volume, seen on neuroimaging studies. METHODS: To examine the potential role of blood metabolites and inflammatory mediators in increased brain volume in Malawian children with CM, an association study was performed between plasma metabolites, cytokine levels and phospholipase A2 (PLA2) activity with brain volume. RESULTS: The metabolomics analysis demonstrated arachidonic acid and other lysophospholipids to be positively associated with brain swelling. These lipids are products of the PLA2 enzyme and an association of plasma PLA2 enzymatic activity with brain swelling was confirmed. TNFα, which can upregulate PLA2 activity, was associated with brain volume. In addition, CCL2 and IL-8 were also associated with brain volume. Some of these cytokines can alter endothelial cell tight junction proteins and increase blood brain barrier permeability. CONCLUSIONS: Taken together, paediatric CM brain volume was associated with products of the PLA2 pathway and inflammatory cytokines. Their role in causality is unknown. These molecules will need to undergo testing in vitro and in animal models to understand their role in processes of increased brain volume. These observations provide novel data on host physiology associated with paediatric CM brain swelling, and may both inform pathogenesis models and suggest adjunct therapies that could improve the morbidity and mortality associated with paediatric CM.


Assuntos
Encéfalo/patologia , Citocinas/sangue , Metabolismo dos Lipídeos , Lipídeos/sangue , Malária Cerebral/patologia , Fosfolipases A2/metabolismo , Animais , Criança , Pré-Escolar , Estudos de Coortes , Humanos , Lactente , Malaui
13.
Langmuir ; 31(17): 4988-95, 2015 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-25865754

RESUMO

Metal-organic frameworks (MOFs) are an emerging class of microporous, crystalline materials with potential applications in the capture, storage, and separation of gases. Of the many known MOFs, MOF-5 has attracted considerable attention because of its ability to store gaseous fuels at low pressure with high densities. Nevertheless, MOF-5 and several other MOFs exhibit limited stability upon exposure to reactive species such as water. The present study quantifies the impact of humid air exposure on the properties of MOF-5 as a function of exposure time, humidity level, and morphology (i.e., powders vs pellets). Properties examined include hydrogen storage capacity, surface area, and crystallinity. Water adsorption/desorption isotherms are measured using a gravimetric technique; the first uptake exhibits a type V isotherm with a sudden increase in uptake at ∼50% relative humidity. For humidity levels below this threshold only minor degradation is observed for exposure times up to several hours, suggesting that MOF-5 is more stable than generally assumed under moderately humid conditions. In contrast, irreversible degradation occurs in a matter of minutes for exposures above the 50% threshold. Fourier transform infrared spectroscopy indicates that molecular and/or dissociated water is inserted into the skeletal framework after long exposure times. Densification into pellets can slow the degradation of MOF-5 significantly, and may present a pathway to enhance the stability of some MOFs.

14.
Immunity ; 40(6): 974-88, 2014 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-24931122

RESUMO

Cells of the innate immune system are essential for host defenses against primary microbial pathogen infections, yet their involvement in effective memory responses of vaccinated individuals has been poorly investigated. Here we show that memory T cells instruct innate cells to become potent effector cells in a systemic and a mucosal model of infection. Memory T cells controlled phagocyte, dendritic cell, and NK or NK T cell mobilization and induction of a strong program of differentiation, which included their expression of effector cytokines and microbicidal pathways, all of which were delayed in nonvaccinated hosts. Disruption of IFN-γ signaling in Ly6C+ monocytes, dendritic cells, and macrophages impaired these processes and the control of pathogen growth. These results reveal how memory T cells, through rapid secretion of IFN-γ, orchestrate extensive modifications of host innate immune responses that are essential for effective protection of vaccinated hosts.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Memória Imunológica , Interferon gama/imunologia , Ativação Linfocitária/imunologia , Transferência Adotiva , Animais , Antígenos Ly , Diferenciação Celular/imunologia , Citocinas/imunologia , Células Dendríticas/imunologia , Feminino , Herpesvirus Humano 2/imunologia , Imunidade Inata , Imunização , Células Matadoras Naturais/imunologia , Listeria monocytogenes/imunologia , Listeriose/imunologia , Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Monócitos/imunologia , Células T Matadoras Naturais/imunologia , Fagocitose/imunologia , Receptores de Interferon/genética , Receptor de Interferon gama
15.
Curr HIV Res ; 12(2): 85-96, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24862333

RESUMO

HIV infected people are living longer due to the success of combined antiretroviral therapy (cART). However, greater than 40-70% of HIV infected individuals develop HIV associated neurocognitive disorders (HAND) that continues to be a major public health issue. While cART reduces peripheral virus, it does not limit the low level, chronic neuroinflammation that is ongoing during the neuropathogenesis of HIV. Monocyte transmigration across the blood brain barrier (BBB), specifically that of the mature CD14(+)CD16(+) population that is highly susceptible to HIV infection, is critical to the establishment of HAND as these cells bring virus into the brain and mediate the neuroinflammation that persists, even if at low levels, despite antiretroviral therapy. CD14(+)CD16(+) monocytes preferentially migrate into the CNS early during peripheral HIV infection in response to chemotactic signals, including those from CCL2 and CXCL12. Once within the brain, monocytes differentiate into macrophages and elaborate inflammatory mediators. Monocytes/macrophages constitute a viral reservoir within the CNS and these latently infected cells may perpetuate the neuropathogenesis of HIV. This review will discuss mechanisms that mediate transmigration of CD14(+)CD16(+) monocytes across the BBB in the context of HIV infection, the contribution of these cells to the neuropathogenesis of HIV, and potential monocyte/macrophage biomarkers to identify HAND and monitor its progression.


Assuntos
Infecções por HIV/fisiopatologia , Monócitos/metabolismo , Infecções por HIV/metabolismo , Humanos , Receptores de Lipopolissacarídeos/metabolismo , Macrófagos/metabolismo , Receptores de IgG/metabolismo
16.
Genesis ; 51(8): 587-95, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23650205

RESUMO

Type 2 CXC chemokine receptor CXCR2 plays roles in development, tumorigenesis, and inflammation. CXCR2 also promotes demyelination and decreases remyelination by actions toward hematopoietic cells and nonhematopoietic cells. Germline CXCR2 deficient (Cxcr2(-/-) ) mice reported in 1994 revealed the complexity of CXCR2 function and its differential expression in varied cell-types. Here, we describe Cxcr2(fl/fl) mice for which the targeting construct was generated by recombineering based on homologous recombination in E. coli. Without recombination Cxcr2(fl/fl) mice have CXCR2 expression on neutrophils in peripheral blood, bone marrow and spleen. Cxcr2(fl/fl) mice were crossed to Mx-Cre mice in which Cre recombinase is induced by Type I interferons, elicited by injection with polyinosinic-polycytidylic acid (poly(I:C)). CXCR2-deficient neutrophils were observed in poly(I:C) treated Cxcr2(fl/fl) ::Mx-Cre(+) (Cxcr2-CKO) mice, but not in poly(I:C) treated Cxcr2(f//+) ::Mx-Cre(+) mice. CXCR2 deletion was mainly observed peripherally but not in the CNS. Cxcr2-CKO mice showed impaired neutrophil migration in sterile peritonitis. Cxcr2-CKO mice reported here will provide a genetic reagent to dissect roles of CXCR2 in the neutrophil granulocyte lineage. Furthermore Cxcr2(fl/fl) mice will provide useful genetic models to evaluate CXCR2 function in varied cell populations.


Assuntos
Deleção de Genes , Neutrófilos/metabolismo , Receptores de Interleucina-8B/genética , Animais , Movimento Celular/genética , Camundongos , Camundongos Knockout , Neutrófilos/fisiologia , Receptores de Interleucina-8B/metabolismo
17.
J Neurosci ; 32(24): 8284-92, 2012 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-22699909

RESUMO

Cuprizone inhibits mitochondrial function and induces demyelination in the corpus callosum, which resembles pattern III lesions in multiple sclerosis patients. However, the molecular and cellular mechanism by which cuprizone induces demyelination remains unclear. Interleukin-17 (IL-17) secreted by T helper 17 cells and γδT cells are essential in the development of experimental autoimmune encephalomyelitis. In this study, we examined the importance of IL-17 signaling in cuprizone-induced demyelination. We found that mice deficient in IL-17A, IL-17 receptor C (IL-17RC), and adaptor protein Act1 (of IL-17R) all had reduced demyelination accompanied by lessened microglial and polydendrocyte cellular reactivity compared with that in wild-type mice in response to cuprizone feeding, demonstrating the essential role of IL-17-induced Act1-mediated signaling in cuprizone-induced demyelination. Importantly, specific deletion of Act1 in astrocytes reduced the severity of tissue injury in this model, indicating the critical role of CNS resident cells in the pathogenesis of cuprizone-induced demyelination. In cuprizone-fed mice, IL-17 was produced by CNS CD3(+) T cells, suggesting a source of IL-17 in CNS upon cuprizone treatment.


Assuntos
Conexina 43/fisiologia , Cuprizona/toxicidade , Doenças Desmielinizantes/fisiopatologia , Interleucina-17/fisiologia , Esclerose Múltipla/induzido quimicamente , Esclerose Múltipla/fisiopatologia , Fragmentos de Peptídeos/fisiologia , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Complexo CD3/imunologia , Quelantes , Conexina 43/genética , Conexina 43/metabolismo , Doenças Desmielinizantes/induzido quimicamente , Modelos Animais de Doenças , Feminino , Técnicas de Silenciamento de Genes , Interleucina-17/genética , Interleucina-17/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Microglia/efeitos dos fármacos , Microglia/metabolismo , Esclerose Múltipla/imunologia , Esclerose Múltipla/metabolismo , Oligodendroglia/efeitos dos fármacos , Oligodendroglia/metabolismo , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Receptores de Interleucina-17/genética , Receptores de Interleucina-17/fisiologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia , Linfócitos T/metabolismo
18.
J Neuroimmunol ; 246(1-2): 1-9, 2012 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-22445294

RESUMO

The innate immune system is a crucial component of inflammatory reactions, while the central nervous system (CNS) is the most vulnerable site of the body to inflammatory tissue injury. Neuroinflammatory brain pathologies are disorders in which the CNS is threatened by its own immune system. Chemokine receptor CXCR2 and its ligands have been implicated in several neuroinflammatory brain pathologies, as well as in neutrophil recruitment and in the developmental positioning of neural cells. This review focuses on the basics of CXCR2, its regulating role in bone marrow neutrophil recruitment, oligodendrocyte progenitor cell positioning and neural repair mechanisms, as well as its diverse roles in neuroinflammatory brain pathologies.


Assuntos
Inflamação/imunologia , Inflamação/patologia , Neurônios/imunologia , Neurônios/patologia , Receptores de Interleucina-8B/fisiologia , Animais , Células da Medula Óssea/imunologia , Células da Medula Óssea/metabolismo , Células da Medula Óssea/patologia , Humanos , Inflamação/etiologia , Neurônios/metabolismo , Infiltração de Neutrófilos/imunologia , Receptores de Interleucina-8B/agonistas , Receptores de Interleucina-8B/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...